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Correction for Ambiguous Solutions in Factor
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Arkadiusz Sitek*, Associate Member, IEEE, Grant T. Gullberg, Senior Member, IEEE, and
Ronald H. Huesman, Senior Member, IEEE

Abstract—Factor analysis is a powerful tool used for the anal-
ysis of dynamic studies. One of the major drawbacks of factor anal-
ysis of dynamic structures (FADS) is that the solution is not math-
ematically unique when only nonnegativity constraints are used to
determine factors and factor coefficients.In this paper, a method
to correct for ambiguous FADS solutions has been developed. A
nonambiguous solution (to within certain scaling factors) is ob-
tained by constructing and minimizing a new objective function.
The most common objective function consists of a least squares
term that when minimized with nonnegativity constraints, forces
agreement between the applied factor model and the measured
data. In our method, this objective function is modified by adding
a term that penalizes multiple components in the images of the
factor coefficients. Due to nonuniqueness effects, these factor co-
efficients consist of more than one physiological component. The
technique was tested on computer simulations, an experimental ca-
nine cardiac study using99 Tc-teboroxime, and a patient planar
99 Tc-MAG 3 renal study. The results show that the technique
works well in comparison to the truth in computer simulations
and to region of interest (ROI) measurements in the experimental
studies.

Index Terms—Dynamic SPECT, factor analysis, penalized least
squares.

I. INTRODUCTION

FACTOR analysis of dynamic structures (FADS) [1],
[2], which uses a factor model of the dynamic data, is

a semi-automatic technique used for the extraction of time
activity curves (TACs) from a series of dynamic images. The
mixture analysismethod [3]–[5] is another application of the
factor model to dynamic data. In this method, pixel-wise TACs
are approximated by using a linear combination of underlying
sub-TACs. The main difference between FADS and mixture
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analysis is that FADS extracts physiological TACs. More pre-
cisely, the obtained curves are interpreted as TACs of a given
physiological region and the corresponding factor coefficients
define the geometry of that region. In the mixture analysis
method, the set of generated sub-TACs does not necessarily
correspond to the underlying physiology. That being the case
the set is used for a better representation than the pixel wise
representation of the dynamic data [3]. We will concentrate on
the FADS methods in this paper. Specifically, we will address
the problem of nonuniqueness of the solution, which is the
major drawback of FADS.

In the factor model of dynamic data, it is assumed that activity
in each pixel is a linear combination of factorswith the co-
efficients of the linear combination defined in matrix. Using
this assumption, the dynamic datacan be written as

(1)

with being an error in . The size of is , where
is the number of pixels in the image and is the number of
dynamic images. The matrix of factors is and the
matrix of the factor coefficients is , with being
the number of factors. Put simply, it is assumed that the image
is built from structures that have the same temporal behaviors.
In cardiac imaging, such structures are the myocardium, blood
pools, and liver. In renal imaging, such structures are the kidney
cortex, the background, and the ureter.

The FADS method can be used to obtain operator inde-
pendent results that have advantages over region-of-interest
(ROI) measurements, which are obtained when an operator
specifies ROIs that correspond to different physiological areas
in the image. TACs obtained from ROI measurements may be
composites of activities from different overlapping components
in the selected ROI. These are the major disadvantage of ROI
measurements. On the other hand, the FADS method allows
separation of partially overlapping regions that have different
temporal behaviors, and thereby enabling the extraction of
TACs that correspond to those regions.

The FADS procedure usually consists of an orthogonal anal-
ysis of the dynamic sequence followed by anoblique rotation.
The oblique rotation imposes nonnegativity constraints on the
extracted TACs (factors) and the extracted images of those fac-
tors (factor coefficients) [1], [2]. Although the oblique rotation
with nonnegativity procedure yields reasonable results, they are
not unique [6], and depending on the dynamic study under con-
sideration, the achieved solution may be quite different from the
truth.
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To explain nonuniqueness of the factor model lets consider a
data set with two factors. Using (1) the data are

where and are the factor coefficients for factors
and , respectively. The above equation can be rearranged to

with being some con-
stant. If only nonnegativity constraints are used then the factor
coefficients and and factors and de-
scribe the same data setas do the factor coefficients and

and factors and as long as and
are nonnegative.

As seen in the above example, it is easy to construct an addi-
tional set of factor coefficients and factors from the existing set,
as long as conditions and are satis-
fied. This simple example illustrates the nonuniqueness problem
for two factors, but similar nonuniqueness considerations apply
to a model with more factors. The severity of the nonuniqueness
artifacts depends on the TACs of the physiological components;
the nonuniqueness effects can be very serious in one study and
nearly nonexistent in another. For a detailed mathematical anal-
ysis and more discussion on these effects, see [7]. Nonunique-
ness is a very serious drawback to the FADS method.

To correct for nonuniqueness, additionala priori information
about the data being analyzed can be used [7]–[12]. Informa-
tion about the spatial distribution of the factor coefficients can
be used asa prior information. For example, the user may be re-
quired to specify a region in the image (such as pure background
or pure blood) where only one component is present, methods
that usea priori information cannot be used generically, they are
designed to work only for specific kinds of dynamic studies. An-
other way to correct for nonuniqueness is to use the maximum
entropy principle [13], [14]. A different approach to correcting
ambiguous solutions was considered in [7], wherein a postpro-
cessing technique was applied to the solution of the nonunique
FADS. However, this approach also usesa priori information
about the spatial distribution of factors in cardiac imaging. This
technique was applied to Tc-99m-teboroxime cardiac imaging.
Another example of correcting for nonuniqueness can be found
in mixture analysis in which unitary constraints [5] have been
used to improve the estimation of the background component,
thereby enabling us to resolve other components.

In this paper, we developed a factor analysis method that
does not require orthogonal analysis. The method does not use
anya priori information and is not restricted to a specific type
of imaging. It can be applied to any medical dynamic sequence
of images. The technique involves using the penalized least
squares (PLS) objective function to uniquely (to withinscale
factors) and accurately extract factors and factor coefficients.

There are three terms in the objective function. One term is
the least squares (LS) term, which forces agreement between the
acquired data and the applied factor model. The second term
imposes the nonnegativity constraints on the factors and the
images of factor coefficients as they are being acquired. The
third term makes the result of the minimization of the objec-
tive function unique by minimizing the products between the
factor coefficient images. The rationale behind the choice of the
third term will be given in Section II. The method was tested
on computer simulations. It was also used to analyze a canine

Tc-teboroxime cardiac study and a patient Tc-MAG
renal study.

II. M ETHODS

A. PLS-FADS

The LS objective, , is a Cartesian norm between the mea-
sured the data and the factor model described by

(2)

where is the estimate of theth factor and is an index
in time. is the th pixel of the estimate of theth factor
coefficient image. represents the value of the measurement
data (dynamic sequence) at theth pixel in the th time frame.
If and are to be physiologically meaningful they must be
nonnegative. To impose the nonnegativity of estimatesand ,
the LS objective is modified by the term , defined as

(3)

where

(4)

with being a penalty constant. By minimizing
, results similar to standard FADS with oblique ro-

tation and nonnegativity constraints are obtained [7]. The LS
method with nonnegativity constraints will be referred to as the
LS-FADS method. Nonnegativity alone though is not enough
to guarantee that each factor coefficient image corresponds to
a single physiological region; by physiological region we mean
the region in the image that has the same temporal behavior. For
example, in cardiac imaging such physiological regions are the
left ventricular (LV) blood pool, right ventricular (RV) blood
pool, liver, and myocardial tissue (if there is no abnormal up-
take in the heart muscle due to infarctions).

Images of the factor coefficients obtained using FADS should
correspond to the images of different physiological regions. Ide-
ally, it is expected that in each factor coefficient image only
one physiological region will be present. However, due to the
nonuniqueness effect, each of the obtained images can be a
linear combination of physiological regions in the image. In
other words, each coefficient image acquired using nonunique
FADS may be a mixture of multiple true physiological compo-
nents (for more details and derivation see [7]). In order to reduce
the amount of mixing, we add to the objective function a term
that is a dot product of the normalized coefficients

(5)

A total objective function will
be called a penalized LS objective function. Minimization of



218 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 3, MARCH 2002

(5) will reduce the amount of overlap between different coeffi-
cient images and therefore will minimize the amount of mixing
between the different components. It is important in that
the values of the image coefficients be normalized in such a
way that the scaling of does not affect the value of . In

(5), the values are normalized by in the denomi-
nator. Without this normalization, could be scaled to zero
by scaling to zero. Such scaling of is allowed in the factor
model since there is a multiplicative relation betweenand .
Therefore, by scaling by a constant , the matrix is scaled
by 1/ and the model expressed by (1) holds. This scaling cre-
ates additional degrees of freedom which are not constrained by
the objective function.

The coefficient images that result from the minimization of
should have simple structures that correspond to single

physiological regions. The lower value of , compared with
, was chosen so that the nonnegativity of the results

imposed by , as well as agreement with the data guaranteed
by , are not compromised by the addition of the term to
the objective function. The constantis applied in (5) to adjust
the strength of the nonuniqueness penalty. The optimal value of

was investigated in computer simulations for different levels
of noise.

B. Numerical Optimization

First, a number of factors had to be chosen before the
minimization was performed. We used an orthogonal singular
value decomposition of the dynamic data to examine magni-
tudes of the singular values. Then based on the number of sin-
gular values, which were well above the noise level, we chose
the appropriate number of components (see also [14]).

We found from our experience that the algorithm is not sen-
sitive to the selection of a starting point. For all optimization
results included in this paper, the same starting point was used.
We initialized all images of factor coefficients with a value of
one. Since optimization was done by a gradient method, and
the values of were initialized by a constant, the factors had
to be initialized with linearly independent functions. Therefore,
to avoid stalling the optimization, any row of could not be
a linear combination of the other rows. Also the values of
were chosen such that the resulting initial values of the matrix

had approximately the same order of magnitude as
the values in the matrix of the dynamic data being analyzed.

After the initialization, a conjugate gradient method [15] was
used for the minimization. In each iteration, a gradient of the ob-
jective function was calcu-
lated analytically using Eqs. (2), (3), and (5). Then the function
was minimized in the conjugate direction of the gradient using
the Brent method [15]. The iterations were terminated when the
relative change in the objective function in one iteration was
less than 10 . Depending on the size of the study, 40–150 it-
erations were required. In terms of speed, the algorithm took
approximately 20 s to converge on the SUN Ultra 1 system for
the two-dimensional (2-D) data sets.

The method which we used for selectingwas to adjust the
value of the penalty parameter after every few iterations of the
conjugate gradient algorithm so that the ratio of

was equal to 0.1. The value ofwas was set to some large
value. Its value was not critical when the algorithm was used to
estimate physical (no negative values) solutions.

After the optimization, the results and matricesand
were re-scaled. That is, the coefficientswere scaled so that
all values of the coefficients were in the range from zero to
one. This scaling was done separately for each column in
by finding the approximate maximum value of each column
by averaging the ten pixels with the highest coefficients, then
dividing all coefficients of a given column by this maximum.
Obviously, the corresponding rows in need to be scaled by
the reciprocal of this maximum in order for (1) to hold.

C. Computer Simulations

A simple dynamic sequence was created from the three
objects presented in Fig. 1 (first row). The intensities of each
object were changed according to the curves presented in
Fig. 1(A)–(C). A total of 90, 64 64 pixel images were
generated. Noise was not added to the images.

A more realistic computer simulation was also performed. A
slice of the MCAT phantom [16] was used for this simulation.
Three components in the image were simulated: The RV blood
pool, the LV blood pool, and the myocardial tissue (TI). The
presence of vascular activity in the myocardial tissue was simu-
lated by adding 10% of LV activity to the tissue. The simulated
curves are presented as truth in Fig. 2(A)–(C), for the RV, LV,
and tissue, respectively. A previously developed model, and its
parameters, were used to create the simulated curves [7]. Partial
volume effects were simulated by smoothing the images of the
MCAT phantom components so that the neighboring structures
partially overlap by two to three pixels.

A dynamic sequence of 180, 2020 pixel images was cre-
ated and analyzed by LS FADS. Dynamic sequences with nor-
mally distributed noise (variances equal to 15%, 25%, and 35%
of the value of the mean) were generated from a noise-free se-
quence. The selection of normally distributed noise for the sim-
ulation was based on the fact that the distribution of noise in re-
constructed images is unknown, and we assumed that normally
distributed noise gives a reasonable approximation. For each
computer simulation with noise, 100 noise realizations were
used.

The accuracy of the curve estimates was measured using a
measure , which was the total distance from the true LV and
RV curves to the estimates of the LV and RV curves obtained
using the LS FADS method. This measure was defined as

(6)

where is the true factor and is an estimate of that factor ob-
tained via the LS FADS method. The measurewas calculated
over the LV and RV only. The tissue component was not taken
into account during the calculation of the measurebecause
the error calculated by of the tissue curve occurs mainly as a
result of the ambiguity over how much simulated vasculature in
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(a) (b) (c)

Fig. 1. Results of computer simulations. The top row of images corresponds
to the circular objects which were used in the computer simulations. The second
row present the factor coefficient images [these images correspond to columns
in the matrix^C in (1)] obtained by the LS-FADS method. The last row presents
the factor coefficients images obtained by the PLS-FADS method. The plots
present a comparison of factors [rows in matrix^F in (1) obtained with different
factor analysis methods to the true curves. Symbols correspond to every 4th
frame. Plots (A), (B), and (C) correspond to objects presented in columns (a),
(b), and (c), respectively.

the tissue is present in the tissue curve obtained by nonunique
LS-FADS. Since this ambiguity is not directly connected to
the nonuniqueness effects, when considering the LV and RV
components alone, we only take into account the effects of
nonuniqueness of the factor model.

D. Experimental Studies

Data from a Tc-teboroxime canine study were analyzed.
A three-detector IRIX scanner (Marconi Imaging Systems, Inc.,

(a) (b) (c)

Fig. 2. Images of factor coefficients used in computer simulations (MCAT
phantom). (a) RV, (b) LV, and (c) tissue. In the second and the third rows,
images of factors coefficients obtained by LS-FADS and PLS-FADS methods
are presented. Plots (A), (B), and (C) present the factors obtained by the
LS-FADS and PLS-FADS methods with comparison to the true simulated
curves for the RV, LV, and tissue, respectively. The same gray scale representing
values from zero to one is used for each image. The presented results are for
one realization of 25% noise. For the LS-FADS method the penalty parameter
was equal to zero, and for the PLS-FADS method,b equaled to 2� 10 . Only
the first 400 s out of a total 1080 s of the curves are presented.

Cleveland, OH) was used to acquire transmission and emission
projection data. The camera acquired 120 projections every 6
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s for approximately 18 min. The 179 dynamic images were re-
constructed using 25 iterations of the maximum-likelihood ex-
pectation-maximization algorithm with attenuation correction.
The reconstructed three-dimensional (3-D) images were then
reoriented to obtain short-axis slices of the heart. Factor anal-
ysis methods were applied to a 2-D, 1111 pixel region that
encompassed a short axis slice of the myocardium. A 3-D anal-
ysis in which a series of 179 (six slices, 1111 pixels) images
were analyzed as a 3-D data set was also performed.

Patient data from a planar Tc-MAG renal study were
also analyzed. The data were acquired using an eCam system
(Siemens, Hoffman Estates, IL). The patient rested in a supine
position as data were acquired by the detector in a 128128
pixel matrix. The 300 dynamic images were acquired every 5
s. FADS was applied to an 18 20 pixel region that encom-
passed the right kidney. Only small regions of the image were
investigated since incorporation of the larger regions would re-
quire increasing the number of factors to adequately represent
the data, which would decrease the accuracy of the obtained fac-
tors that we are interested in.

ROI measurements were performed in both experimental
studies. In the 2-D canine cardiac study, the ROIs spanned
four pixels. They were automatically determined using FADS
results that identified pixels with the highest values of factor
coefficients (matrix ) that corresponded to the LV, RV, and
tissue. Such semi-automatic selection of ROIs decreases the
amount of errors caused by overlapping of neighboring factors.
It is also user independent. For the 3-D cardiac and renal
patient study the ROIs spanned ten pixels, and the method for
determining the locations of the ROIs was the same as in the
2-D cardiac study.

The change of contrast in the image of the factor coefficients
between region one in the image and region two in the image
was measured using the following definition:

(7)

where and are average values of three pixels from a
given region in the factor coefficient image for regions one
and two, respectively.

III. RESULTS

The conjugate gradient algorithm was very robust. Uncon-
strained degrees of freedom due to scaling did not hinder con-
vergence of the algorithm. All results are presented in the forms
of images that correspond to images of factor coefficients and
curves that correspond to factors. Since the results were rescaled
after the reconstruction, as described in Section II-B, all images
are in the range from zero to one, so the same gray scale is used
for all of them.

A. Results of Computer Simulations

The results of the LS-FADS study are presented in Fig. 1.
The images of factor coefficients obtained using this method
are shown in second row of Fig. 1. In each image, all of the
objects can be seen due to the nonuniqueness effects. The

factors obtained using the LS-FADS method are presented in
Fig. 1(A)–(C). They all show substantial disagreement with the
simulated factors. The third row of images in Fig. 1 correspond
to images of factor coefficients obtained using the PLS-FADS
method. Factors obtained by both methods are presented in
Fig. 1(A)–(C) and compared with simulated curves. Both, the
images and the curves obtained using the PLS-FADS method
show very strong agreement with the simulated objects.

The results of the more realistic simulation are presented in
Fig. 2. The first row of images presents the factor coefficient
images used to simulate teboroxime uptake in the heart. The
second row of images corresponds to factor coefficient images
obtained using the nonunique LS-FADS method. Nonunique-
ness artifacts similar to those shown in previous computer sim-
ulations are clearly visible. For instance, in the image of the LV,
some of the RV can be seen, and in the image of the tissue the LV
is clearly visible. Application of the penalized objective reduces
these artifacts and creates much better agreement between the
factors obtained through the FADS methods and the true factors,
as can be seen in the third row of Fig. 2(a)–(c).

The value of the error measureis plotted versus the strength
parameter in Fig. 3(a). For the low values of(less than 10)
reconstructions yield larger errors (high values of) because
the nonuniqueness correction has little effect on the final results
since the value of is low. slowly decreased when FADS was
applied with 5 10 . Further increases of to 5 10
make rapidly increase because the domination of the term

in the objective function. High forces the dot product be-
tween the images of the different factor coefficients to be close
to zero. The null value of the dot product term in the highre-
sults is achieved by creating sharp edges between components,
i.e., the pixels that normally belong to two neighboring compo-
nents, due to the partial volume effect, are forced to be in one or
the other of the neighboring structures. The rapid degradation
of the results, seen in Fig. 3 as a sharp increase of, is created
by further increases of, which force a negative value on the

. Negative values of can be achieved when values of
the pixels in one of the images of the factor coefficients reaches
slightly negative values. As a result, the nonnegativity term is
not increased significantly, and at the same time the dot product
of this image with other nonnegative components causes a neg-
ative contribution to .

In Fig. 3(a), for some values of the standard deviation of
the calculated is high and the distribution is asymmetric. This
finding is illustrated in Fig. 3(b). In the histogram, it can be seen
that the final value of for different noise realizations for one
value of is either high or low. This makes the distribution of

high and asymmetric. Fig. 3(c) presents a comparison of the
relationship for different noise levels. It shows that with

higher noise the best achievedis higher and the range of,
for which the nonuniqueness correction works, is narrower.

Table I presents the summary of the computer simulation re-
sults. It shows that the use of the nonuniqueness penalty greatly
improves the value of the measure. In Table I, values of the
penalty parameter,and are given for the PLS-FADS
method, which derived the best value of. The table also shows
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Fig. 3. The Error,D, of the reconstruction of the RV and LV blood curves
versus the value of the penalty parameterb [graph (a) and (c)]. The error bars
in (a) correspond to values of the standard deviation estimated using 100 noise
realizations. In (c), four curves are presented which correspond to four different
levels of simulated normal noise with variances equal to 0%, 15%, 25%, and
35%. The histogram in (b) presents the values of the ErrorDfor b = 2� 10
at a noise level of 15%, for which the distribution was highly asymmetric [see
(a)].

that the ratio of remains at approximately the same
level, 10%, even though the noise levels change considerably.

B. Results of Experimental Studies

The results of the 2-D cardiac canine study are summarized
in Fig. 4. The images in Fig. 4 represent factor coefficients for
three different factors corresponding physiologically to the RV,
LV, and the myocardial tissue. The first row displays the re-
sults obtained using the LS-FADS method. The second row dis-
plays the PLS-FADS results. The contrast is improved in the
PLS-FADS images of the LV and tissue (contrast between pixels
corresponding to the LV and tissue) in comparison to the im-
ages obtained using the LS-FADS method. For the LV coef-
ficient image, was 0.79 for the LS-FADS and 0.95 for

TABLE I
COMPARISON OF THEMINIMUM VALUES OF THE MEASURED WITH

CORRESPONDINGVALUE OF b OBTAINED BY THE LS- AND PLS-FADS
METHODS FOR THECOMPUTERSIMULATIONS

the PLS-FADS. The value of also improved from 0.65 for
the LS-FADS method to 0.86 for the PLS-FADS method. In
the image of tissue coefficients, changed from 0.84 to
1.00. Fig. 4(A)–(C) show factors obtained using the LS- and
PLS-FADS methods and the corresponding TACs obtained by
ROI measurements. It can be seen that the PLS-FADS factors
agree better with the ROI curves than the factors obtained by
the LS-FADS method. Measures, calculated between the ROI
curve and the factor analysis obtained curve, were 0.2874 and
0.1187 for the LS-FADS method and the PLS-FADS method,
respectively. We would like to state that the comparison is made
to ROI curves which may be biased for the reasons already
discussed in the Introduction. However, ROI measurements are
widely used for the extraction of the TACs.

The analysis of the 3-D data (Fig. 5) yields findings similar
to those of the 2-D analysis. It is noteworthy that the sixth slice
in the 3-D data set is the same slice studied in the 2-D analysis,
for which the results are presented in Fig. 4. For the 6th slice
in the 3-D data set, FADS with the correction for nonunique-
ness gave results that agree better with the ROI measurements
than FADS without the correction (Fig. 5) ( 0.1953 for the
LS-FADS and 0.0736 for the PLS-FADS). This is partic-
ularly apparent in the tissue curves [Fig. 5(C)]. Also, contrast
in the images of the factor coefficients of the LV and the tissue
obtained by the PLS-FADS method is improved over the results
of the LS-FADS method [Fig. 5(A)–(C)]. For the 3-D LV coeffi-
cient image, changed from 0.63 for the LS-FADS to 0.89
for PLS-FADS method. Also, the value of was better with
the PLS-FADS (1.00) method than with the LS-FADS method
(0.87). In the image of tissue coefficients, changed from
0.98 to 1.00.

The LS-FADS and PLS-FADS methods were also applied to
a patient renal study. Results of the LS-FADS and PLS-FADS
analysis, which were applied to the right kidney, are presented in
Fig. 6. The top two rows of images present the factor coefficient
images for the kidney cortex, background, and pelvis/ureter
components obtained using nonunique LS-FADS first row) and
PLS-FADS (second row). In the LS-FADS results, the images
have similar structures and overlap considerably. This results
in factors that do not agree with the ROI curves. These findings
are presented in the plots in Fig. 6(A)–(C). In the LS-FADS



222 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 3, MARCH 2002

(a) (b) (c)

Fig. 4. Results of LS-FADS and PLS-FADS analysis of a Tc-teboroxime
canine cardiac study. The top row corresponds to images of factor coefficients
for (a) RV blood, (b) LV blood, and (c) tissue components obtained by
LS-FADS. The lower row of images was obtained by PLS-FADS. The same
gray scale representing values from zero to one is used for each image. Plots
(A), (B), and (C) present the factors obtained by the FADS methods with
comparison to curves obtained by ROI measurements.

results (region from 1000 s to 1500 s), the curves appear to be
much noisier. This is because the factor coefficient images are
similar, which allows the factors toexchange,i.e., the factor
increase in one curve is compensated for by decreases in the

Fig. 5. Results of 3-D LS-FADS and PLS-FADS analysis of a
Tc-teboroxime canine cardiac study. The top three rows correspond

to images of factor coefficients for 6 consecutive slices for (a) RV blood, (b)
LV blood, and (c) tissue components obtained by LS-FADS. The same gray
scale representing values from zero to one is used for each image. The lower
three rows of images was obtained by 3-D PLS-FADS. Plots (A), (B), and (C)
present the factors obtained by the 3-D FADS methods with comparison to
curves obtained by ROI measurements.

other factors. This is only possible because the images of the
factor coefficients are similar and high noise levels are present.
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(a) (b) (c)

Fig. 6. The results of LS FADS methods of a Tc-MAG patient renal study. The top row corresponds to images of factor coefficients obtained by the LS-FADS
for (a) kidney cortex, (b) background, and (c) pelvis and ureter components. Second row of images is the same but obtained by the PLS-FADS. The same gray
scale representing values from zero to one is used for each image. Plots (A), (B), and (C) present the factors obtained by the PLS-FADS methods with comparison
to curves obtained by ROI measurements.

When the PLS-FADS method is applied the obtained curves
agree much better with the ROI measurements. Thecalcu-
lated using the background and the cortex factors between the

ROI curves and the FADS obtained curves decreased from
0.2554 for the LS-FADS to 0.1128 for the PLS-FADS
method. The agreement of background curves is approximate
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(a)

(b)

Fig. 7. (a) Factors for which FADS with nonnegativity constraints will give a
unique solution and (b) factors used in the computer simulations in this paper.

though because the FADS-obtained background image also con-
tains some of the liver component, which can be seen in the co-
efficient image of the background as increased activity in the
upper right corner of Fig. 6(b), second row. As a result, the cor-
responding factor is biased by the liver component. The pelvis
curves, although similar in shape, differ considerably due to the
fact that in the ROI results there is complete overlap of the cortex
and pelvis, whereas in the FADS results, these two different
physiological regions are separated.

IV. DISCUSSION

The figures presenting the results from computer simulations
(Figs. 1 and 2) clearly show that the factor coefficient images are
mixed when the FADS method with nonnegativity constraints is
employed. For example, in the FADS obtained images of each
component, the other components can be seen. Most of the cor-
responding factors are completely inaccurate and lie far from the
simulated curves—this is especially apparent in Fig. 1(A)–(C).
The example in Fig. 1 shows the possible severity of nonunique-
ness artifacts. This example was specifically chosen to show
how inaccurate FADS with nonnegativity constraints can be. On
the other hand, it is possible to construct a different computer
simulation in which FADS with nonnegativity constraints gives
a unique answer. For example, if the factors used are the same as
the ones presented in Fig. 7(a), FADS with nonnegativity con-
straints will give a unique answer. This is because it is impos-
sible to subtract any of those factors from any others without
violating the nonnegativity of the factors. This, and the fact that
the factor coefficient images also cannot be subtracted from one
another without violating nonnegativity, guarantees the unique-
ness of the FADS results for this example (for more detail see
[7]). Conversely, it was shown in the computer simulations that
nonuniqueness artifacts were severe when they were applied to
the set of factors presented in Fig. 7(b). It can be concluded that
the nonuniqueness effects have a significant impact on the re-
sults of FADS, and the severity of the nonuniqueness strongly
depends on the study under consideration.

The algorithm presented here introduces unconstrained de-
grees of freedom due to arbitrary scaling of the factors and factor
coefficients. However, this does not affect convergence of gra-
dient-based optimization because directional derivatives of the
objective function in directions associated with the scaling am-
biguity are zero.

The most problematic issue in the method presented is the se-
lection of the appropriate value of the nonuniqueness penalty pa-
rameter . Fig. 3(a) shows that for the analyzed computer simu-
lation of teboroxime uptake,needs to be larger than a threshold
value in order for the correction to work. The improvement in
accuracy of the curve extraction by PLS-FADS is very rapid. It
can be seen in the histogram in Fig. 3 that with the same noise
level—but different noise realizations, nonuniqueness correc-
tion either works (low values of ), or does not work (high
values of ), with no values lying in-between. The value of

must also be less than an upper threshold, above which ex-
tracted factors and factor coefficients are not accurate because
the nonuniqueness term dominates in the objective function and
the results of the factor model no longer match the analyzed
data. Thus, has to be in the range between the lower and
upper thresholds. As seen in Fig. 3(c), the upper threshold re-
mained the same and the lower threshold changed as noise levels
changed. However, the minima of were always such that the
value of was approximately ten times larger than ,
as can be seen in Table I. This fact was used to selectfor the
experimental studies. Although the mis-selection ofis a po-
tential problem it is encouraging that (as shown in the computer
simulation), the range of “good”values is wide and, depending
on the noise, varies from one to two orders of magnitude. Also
encouraging is the fact that whenwas selected in the same
manner as in the teboroxime study it proved equally useful for
the completely different renal study (Fig. 6).

This strategy used for selecting as described in
Section II-B proved to be successful. It worked not only
in Tc-teboroxime cardiac imaging and renal imaging
as shown in the paper, but also for other dynamic studies
not shown here. We found that it worked well for a patient

Tc-teboroxime cardiac study with four components (the
LV, RV, tissue, and liver), a two-component positron emission
tomography liver FDG study, and a dynamic cardiac MRI
study.

When using PLS-FADS, the dot product between the factor
coefficient images is minimized without violating the nonnega-
tivity constraints, or violating (2), because the constantin (5)
is small. This minimization prevents mixing and creates per-
fect agreement between the PLS-FADS results and the simu-
lated data [fourth row of Fig. 1 and Fig. 1(A)–(C)]. These ef-
fects can also be seen in the experimental data. In the image
of the left ventricle in Fig. 4(b) first row, some of the compo-
nents of the right ventricle and the tissue can be seen. Additional
components in this image are removed when PLS-FADS is used
[Fig. 4(b) second row].

The same effect can be seen in the images of the tissue compo-
nents. The tissue image [Fig. 4(c) first row] is biased by the LV
and the RV. When PLS-FADS is used the LV and RV contam-
ination is removed from the image of tissue factor coefficients,
which increases the contrast in this image [Fig. 4(c) second row]
in comparison to the tissue image obtained using the LS-FADS
method. Significantly better agreement is achieved between the
results of factor analysis and the ROI measurements when the
penalized objective function is used. This is especially true for
the LV [Fig. 4(B)] and for the RV [Fig. 4(A)] curves.

Different nonuniqueness effects can be seen in the results of
FADS for the 3-D data set than can be seen in the FADS re-
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sults for the 2-D data set. The tissue curve obtained using the
LS-FADS method is much different than the curve obtained by
the ROI measurements [Fig. 5(C)]. This disagreement was cor-
rected by applying the nonuniqueness correction (PLS-FADS).
A disagreement in the tissue curves obtained by the LS-FADS
arises because the LV component completely underlies the my-
ocardial tissue due to the existence of vasculature in the heart
muscle. Therefore, the amount of vasculature contained in the
tissue curve in the results of the nonunique FADS acquisition
is ambiguous. Due to this ambiguity in the 2-D data set the
tissue curve obtained by LS-FADS is close to the ROI curve
[Fig. 4(C)], and for the 3-D data set it is not [Fig. 5(C)] (see also
[7]). Obviously, the tissue ROI curves represent the tissue curve
with an addition of a vasculature component. The PLS-FADS
removes the disagreement because the nonuniqueness correc-
tion minimizes the overlap between the factor coefficients, so
that the myocardial tissue and the LV vasculature of the heart
muscle are treated as one component, since spatially they oc-
cupy the the same space. As a result, the PLS-FADS tissue curve
is similar to the one obtained by ROI measurements [Figs. 4(C)
and 5(C)]. This can also be seen in the results of the computer
simulations (Fig. 2).

Some new nonuniqueness artifacts can be seen in the renal
study where the components are exchanged, thereby increasing
the noise in the acquired factors [Fig. 6(C)]. This is because im-
ages of the factor coefficients are similar. This similarity is re-
moved when the penalty is used in the objective function and the
exchange effect is removed in the results of the PLS-FADS. In
the renal study, there is a partial overlap between the pelvis com-
ponent and the cortex. The PLS-FADS method separates these
regions [Fig. 6(b) and (c)]. In the factor curve that corresponds
to the pelvis, a delay can be seen between the maximum activity
in the cortex and the maximum activity in the pelvis. Activity
in the pelvis is zero during the first 2 min after injection. These
effects cannot be seen on ROI curves because of the overlap be-
tween the pelvis and the cortex. Therefore, the ROI curve that
corresponds to the pelvis is nonzero from the beginning.

V. SUMMARY

In this paper, we showed the importance of nonuniqueness
correction in factor analysis. Based on the LS approach, we de-
veloped a simple and straightforward method for correcting the
nonuniqueness effects of FADS. The correction was based on
minimizing the overlaps between the images of different factor
coefficient images. The overlap that occurred was one of the
nonuniqueness effects, and, as a result of its minimization, other
nonuniqueness effects seen in the factor curves were also min-
imized. The tradeoff between minimization of the nonunique-
ness effects and agreement with the data governed by the value
of the parameter is a limitation of the method. A strategy to

overcome this limitation was proposed. The strategy is based on
computer simulations and was successfully applied to an exper-
imental canine Tc-teboroxime cardiac study and to a patient

-MAG renal study.
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